喜爱知道

当前位置:喜爱知道 > 喜爱百科 > 在矩形ABCD中,对角线AC,BD交于点O,AE平分 直角三角形角的比例等于边的比例

百科大全

在矩形ABCD中,对角线AC,BD交于点O,AE平分 直角三角形角的比例等于边的比例

浏览量:0

时间:2025-05-25

在矩形ABCD中,对角线AC,BD交于点O,AE平分

1、在矩形ABCD中,对角线AC、BD相交于点O,AE平分∠BAD,若∠EAO=15°。解:因为:AE平分∠BAD,∠BAD=90° 所以:∠DAE=∠BAE=45°,所以:∠BEA=45° 所以:AB=BE 而:∠EAO=15° 所以:∠BAO=60° 即:△ABO是等边三角形 所以:∠OBE=90°-60°=30°,BO=BE 所以:∠BOE=∠BEO=(180°-30°)/2=75° 。

2、在矩形ABCD中,对角线AC、BD相交于点O,AE平分∠BAD,AE交BC于点E,若∠C。∵四边形ABCD为矩形 ∴∠DAB=∠ABC=90° ∵AE平分∠BAD ∴∠DAE=∠EAB=45° 又∵∠ABC=90° ∴△ABE为等腰直角三角形 ∴AB=BE ∵∠OAE=15° ∴∠DAC=30°=∠DBC 易证△OAB为正三角形 ∴AO=BO=AB=BE ∴∠BOE=∠OEB=(180°—30°)÷2=75° 。

3、如图,在矩形ABCD中,对角线AC、BD相交于点O,AE平分∠BAD交BC于点E。若。75° 解:∵ AE平分∠BAD,∴ ∠BAE=∠EAD=45°。又知∠EAO=15°,∴ ∠OAB=60°。∵ OA=OB,∴ △BOA为等边三角形,∴ BA=BO。∵ ∠BAE=45°,∠ABC=90°,∴ △BAE为等腰直角三角形,∴ BA=BE。∴ BE=BO,∠EBO=30°,∠BOE=∠BEO,此时∠BOE=75°。

4、如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于E,若∠。①∵AE平分∠BAD ∴∠EAD=45° 又∠CAE=15° ∴∠CAD=30° ∴AC=2CD=4cm ∴OD=2cm ②∵∠BAE=45° ∴△ABE是等腰直角三角形 ∴BE=BA=BO ∴∠BEO=∠BOE ∵∠EBO=∠CAD=30° ∴∠BOE=75° ∵∠BOC=∠BAO+∠ABO=120° ∴∠EOC=120°-75°=45° 。

5、在矩形ABCD中,对角线AC、BD相交于O,AE平分∠BAD,交BC于E,若∠CAE=1。解:∵矩形abcd ∴ao=bo,∠bad=∠abc=90 ∵ae平分∠bad ∴∠bae=∠bad/2=45 ∴∠bac=∠bae+∠cae=45+15=60 ∴等边△aob ∴∠abo=60,ab=bo ∴∠cbd=∠abc-∠abo=90-60=30 又∵∠abc=90,∠bae=45 ∴be=ab,∠aeb=45 ∴be=bo ∴∠boe=∠beo=(180-∠cbd)/。

直角三角形角的比例等于边的比例

1、如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交于BC于点E,若∠CAE。∵∠CAE=15° 而AE平分∠BAD ∴∠BAC=∠BAE+∠CAE=45°+15°=60° ∵矩形ABCD中,AC,BD相交于O ∴AO=BO ∴△ABO为等边三角形 ∴AB=BO ∠ABO=60° 又∵∠BAE=45° ∠ABE=90° ∴△ABE为等腰三角形 ∴AB=BE ∴BO=BE ∴△BOE为等腰三角形 ∴∠BOE=(180°-∠OBE)/2=【180°-(。

2、如图,在矩形ABCD中,对角线AC,BD相交于O,AE平分∠BAD。若∠EAO=15°。解:方法1:设AB=1,∵AE平分∠BAD,∠EAO=15°,∴∠BAE=∠AEB=45°、∠ACB=30°,∴∠OBC=30°,∴∠AOB=60°,∴△OAB为等边三角形,∴OA=1,AE= 2,AC=2,∴ OAAE=AEAC,∵∠OAE=∠EAC,∴△AOE∽△AEC,∴∠AEO=∠ACE=30°,又∵∠AEB=∠ACE+∠EAC=45°,∴∠BEO=75°。

3、矩形abcd中,对角线ac,bd相交于点o,ae平分角bad。连接oe,若bc=2ab。由于AE是∠BAD的角平分线,所以点E到两边AD和AB的距离相等。即ED=BC=AD。(其中E点到AB的距离等于CB) (1)所以角∠CAE=∠BAE=45度 由于∠CAE=15度,所以∠CAB=30度,∠ACD=30度,所以∠ABO=30度,所以∠AOB=120度,∠BDC=30度。所以BC=(1/2)AC=AO=CO=BO=DO。(矩形对角线相等) (2)由(。

4、在矩形ABCD中,对角线AC、BD相交于O,AE平分∠BAD,交BC于E,若∠CAE=1。解:∵AE平分∠BAD ∴∠BAE=∠DAE=45度 ∵∠CAE=15° AD‖BC ∴∠ACE=∠DAC=30度 ∠AEB=∠BAE=45度 ∴AB=BE AC=2AB ∴∠BAO=60度 ∵矩形ABCD中AO=BO ∴△AOB是等边三角形 ∴AO=AB 设AB=X,则AO=X ∴AC=2X AE=√(X^2+X^2)=(√2)*X ∴AO/AE= X/【(。

5、如图,矩形ABCD中,对角线AC和BD相交于点O,AE平分∠BAD,交BC于点E。若∠。∵AE平分∠BAD ∵∠BAE=45° ∴△ABE是等腰直角三角形 ∴BE=BA ∵∠BAE = 45°,∠CAE=15° ∴∠BAO=60° ∵OA=OB ∴⊿ABO是等边三角形 ∴BA=OB=BE ∴∠BEO=∠BOE ∵∠EBO=∠CAD=30° ∴∠BOE=75° 数学之美为您解答,希望满意采纳,祝学习进步。